

HUASHAN SUN (Homepage)

◇ sunhuashan910@gmail.com ◇ (+86) 18780084109 ◇ Google Scholar ◇ GitHub

EDUCATION

Beijing Institute of Technology

Master of Engineering Candidate, Artificial Intelligence GPA: 3.76/4

Beijing, China

Bachelor of Engineering, Artificial Intelligence

GPA: 3.70/4 CET-6(602)

09/2023 - 06/2026

09/2019 - 06/2023

INTERNSHIP EXPERIENCE

Tongyi Lab, Alibaba Group

Beijing, China

Research Internship

12/2024 - 12/2025

- Optimized **QwenDoc** by developing **SoLoPO**, a unified and principled framework, to resolve long-context training inefficiencies, cutting DPO run time by 52%, and doubling max trainable length under identical conditions.
- Stabilized **QwenLong-L1.5** RL training by implementing Negative Gradient Clipping and Advantage Correction to solve "entropy explosion", reaching parity with Gemini-2.5-Pro in long-context comprehension.

Rednote

Beijing, China

Recommendation Algorithm Intern

10/2022 - 02/2023

RESEARCH EXPERIENCE

SoLoPO: Unlocking Long-Context Capabilities in LLMs via Short-to-Long Preference Optimization

ICLR 2026

02/2025 - 05/2026

First Author, [paper link](#), work conducted at Tongyi Lab

- Theoretically proved long-context PO can be decoupled into short-context PO and short-to-long reward alignment.
- Proposed SoLoPO, a framework compatible with all PO algorithms for better and efficient long-context alignment.
- SoLoPO achieves superior results on various long-context benchmarks compared to original algorithms (DPO, SimPO, and ORPO), reducing DPO run time by 52% while doubling the max trainable sequence length.

Unveiling and Addressing Pseudo Forgetting in Large Language Models

ACL 2025 Findings

First Author, [paper link](#), work conducted at Beijing Institute of Technology (BIT)

10/2024 - 02/2025

- Identified and validated the pseudo forgetting phenomenon in LLMs, demonstrating that performance degradation on previously learned tasks stems from reduced instruction dependency rather than actual capability loss.
- Proposed Rationale-Guidance Difficulty based Replay framework for continual learning, achieving 1.8% reduction in forgetting rate and 2.4% improvement in average performance compared to Random-Replay on LongBench dataset.

PSST: A Benchmark for Evaluation-driven Text Public-Speaking Style Transfer

EMNLP 2024 Findings

First Author, [paper link](#), work conducted at BIT

10/2023 - 06/2024

- Proposed PSST benchmark for evaluating LLMs' complex style transfer capabilities in the long-context scenarios.
- Developed a fine-grained evaluation framework for long-text style transfer, incorporating document-level style strength score, style strength distribution, and QA-based semantic consistency assessment.
- Key findings of current LLMs: over-stylization, uneven style strength distribution, and severe semantic degradation.

MindLLM: Lightweight large language model pre-training, evaluation and domain application

AI Open

10/2023 - 06/2024

Co-first author, [paper link](#), work conducted at BIT

- Pre-training: (1) participated in data mixture experiments; (2) implemented "effective" pre-training sample construction experiments and multi-GPU training for MindLLM-3B, achieving 2-point improvement in MMLU with ICL promoting.
- Instruction Tuning: conducted diversified high-quality instruction-following data construction and selection.
- Evaluation: developed multi-dimensional ability evaluation framework for benchmarking against mainstream LLMs.
- Achievements: MindLLM-1.3B and 3B outperform or match LLMs with more parameters and training data on general knowledge, bilingual alignment, and numerical computation benchmarks. ([open-source link](#) of MindLLM-1.3B)

Contributing author publications (Details available on my [Homepage](#))

[1] QwenLong-L1.5: Post-Training Recipe for Long-Context Reasoning and Memory Management (technical report, [link](#))

[2] How far can in-context alignment go? exploring the state of in-context alignment (EMNLP 2024 Findings, [link](#))

[3] Fundamental capabilities and applications of large language models: A survey (ACM Computing Surveys, [link](#))

TECHNIQUES AND SKILLS

- Deep learning frameworks: PyTorch, Transformers, DeepSpeed, veRL, vLLM, OpenCompass
- Efficient training algorithms: Ulysses, ZeRO, FSDP, Flash-Attention, LoRA